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• Architecture of the single- and multilayer artificial 
neural networks

• Operation of these networks

• Derivation of the parameters
– Direct calculations

– Training (most commonly used method)

• Various training methods
– Single-layer perceptrons

– Fully connected multilayer perceptrons

We have discussed…
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What does training really mean mathematically?
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• Given:
– Definition of the network architecture

• Topology

• Initial weights

• Activation functions (nonlinearities)

• Training set (xi  yi)

What is training?

• Goal:
– Calculation of the optimal weight composition: Wopt

1. Having a known function to approximate
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2.    Having a set of observations from a stochastic process
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Stochastic process is a 
process, where we cannot 
observe the exact values.
In these processes, our
observations are always
corrupted with some 
random noise.

OPTIMIZATION!!!



Optimization

• Function types:
• Quadratic, in case of regression (stochastic process)

• Conditional log-likelihood, in case of classification (classification process)
• The sum of the negative logarithmic likelihood is minimized
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• Given an Objective function to optimize
• Also called: Error function, Cost function, Loss function, Criterion
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Optimizations

• Here we always minimize the objective 
function

• Optimal value is indicated with

x∗ = argmin f(x).

10/1/2018 6



Mathematics behind: Function analysis 
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• Assumptions
• Poor conditioning

• Conditioning number
(Ratio of Eugen values): 

• Applied functions should be Lipschitz
continious or have Lipschitz continious
derivate

Conditioning refers to how rapidly a 
function changes with respect to 
small changes in its inputs. 
Functions that change rapidly when 
their inputs are perturbed slightly
can be problematic for scientific 
computation because rounding 
errors in the inputs can result in 
large changes in the output. 
(e.g. Matrix inversion)
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Optimization goal is to find the                        position.
(Critical or stationary points) 

Basic idea of Gradient Descent

10/1/2018. 8

• Derivative means for small ε

• therefore

• This technique is called 
Gradient Descent 
(Cauchy, 1847).
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Stationary  points
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• Local minimum, where f`(x)=0, and  f(x) is smaller than all 
neighboring points

• Local maximum, where f`(x)=0, and  f(x) is larger than all 
neighboring points

• Saddle points, where f`(x)=0, and neither minimum nor maximum



Local and global minimum
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In neural network parameter optimization we usually settle for finding a 
value of f that is very low, but not necessarily minimal in any formal sense.



Multidimensional input functions I
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• In case of a vector scalar 
function

• In 2D, directional 
derivatives (slope towards x 
and y):
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Multidimensional input functions II
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• In case of a vector scalar function

• Gradient definition in 2D

A vector in the in the x-y plane
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Multidimensional input functions III

10/1/2018. 13

• The gradient defines 
(hyper) plane 
approximating the 
function infinitesimally
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Multidimensional input functions IV
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• Directional derivative to an arbitrary 
direction u (u is unit vector) is the 
slope of f in that direction:

• f decreases the fastest:

• u is opposite to the gradient!!!
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Gradient Descent in multidimensional input case
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• Steepest gradient descent iteration

• ε is the learning rate
• Choosing ε:

– Small constant
– Decreases as the iteration goes ahead
– Line search: checked with several values, and the 

one selected, where x` is the smallest

• Stopping condition of the gradient descent 
iteration
– When the gradient is zero or close to zero
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Jacobean Matrix

• Partial derivative of a vector  vector function

• Specifically, if we have a function 

then the Jacobian matrix

of    is defined such that: 
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2nd derivatives

• 2nd derivative determines 
the curvature of a line in 1D

• In nD, it is described by the 
Hessian Matrix

• The Hessian is the Jacobian 
of the gradient.
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2nd order gradient descent method I 

• 2nd derivative in a specific direction:

• Second-order Taylor series approximation to the function f(x) around 
the current point 

• if we substitute
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2nd order gradient descent method II 

• Analyzing:

• When the third term is too large, the gradient descent step can actually 
move uphill. 

• When it is zero or negative, the Taylor series approximation predicts 
that increasing ε forever will decrease f forever. 

• In practice, the Taylor series is unlikely to remain accurate for large ε, so 
one must resort to more heuristic choices of ε in this case. 

• When it is positive, solving for 
the optimal step
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Simplest 2nd order Gradient descent method: 

Newton Method

• Replacing                              and differentiating it with       , 
assuming that we are in a critical point 
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Newton optimization: 



Properties of Newton optimization method

• When f is a positive definite quadratic function, Newton’s 
method jumps in a single step to the minimum of the function 
directly.

• Newton’s method can reach the critical point much faster than 
1st order gradient descent.
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Newton optimization: 



Convex and non-convex functions
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Strongly convex 
function: 
1 local minimum

Non-convex function: 
multiple non-touching 
local minima with 
different values

Non-Strongly convex 
function: infinity local 
touching minima with 
the same values



Local optimization in non-convex case

• Optimization is done 
locally in a certain 
domain, where the 
function is assumed to be 
convex

• Multiple local 
optimization is used to 
find global minimum
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Most commonly applied gradient descent 
methods

• Algorithms with changing but not adaptive learning rate
– Stochastic Gradient Descent algorithm

– Momentum algorithm

• Algorithms with adaptive learning rate
– AdaGrad algorithm

– RMSProp algorithm

– ADAM algorithm

• 2nd order algorith
– Newton algorithm
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Most commonly applied gradient descent 
methods

• Algorithms with changing but not adaptive learning rate
– Stochastic Gradient Descent algorithm

– Momentum algorithm

• Algorithms with adaptive learning rate
– AdaGrad algorithm

– RMSProp algorithm

– ADAM algorithm

• 2nd order algorith
– Newton algorithm
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Stochastic Gradient Descent (SGD) algorithm

• Introduced in 1945

• Gradient Descent method, plus:

– Applying mini batches

– Changing the learning rate during the iteration
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Batched approach at SGD
• Single vector update approach

– Weights are updated after each input vector

• Batched update approach

– All the input vectors are applied

– Updates (Δwij) are calculated for each vector, and averaged

– Update is done with the averaged values (Δwij) after the entire batch is calculated

• Mini batch approach

– When the number of inputs are very high (billions), batch would be ineffective

– Random selection of m input vectors (m is a few hundred)

– Updates (Δwij) are calculated for each vector, and averaged

– Update is done with the averaged values (Δwij) after the mini batch is calculated

– Works efficiently when far away from minimum, but inaccurate close to minimum

– Requires reducing learning rate
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• Sufficient conditions to guarantee convergence of 
SGD:

• In practice:

• After iteration τ , it is common to leave ε constant

Learning rate at SGD
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and



Stochastic Gradient Descent algorithm

where:  L is the cost function
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Stochastic Gradient Descent algorithm

• This very elongated quadratic
function resembles a long canyon. 

• Gradient descent wastes time 
repeatedly descending canyon 
walls, because they are the 
steepest feature. 

• Because the step size is somewhat
too large, it has a tendency to 
overshoot the bottom of the 
function and thus needs to
descend the opposite canyon wall 
on the next iteration.
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Momentum I

• Introduced in 1964
• Physical analogy
• The idea is to simulate a unity weight mass
• It flows through on the surface of the error 

function
• Follows Newton’s laws of dynamics
• Having v velocity
• Momentum correctly traverses the canyon 

lengthwise, while gradient steps waste 
time moving back and forth across the 
narrow axis of the canyon.
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Momentum II: velocity considerations
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Terminal velocity is applied when it finds descending gradient permanently:



Momentum III
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Most commonly applied gradient descent 
methods

• Algorithms with changing but not adaptive learning rate
– Stochastic Gradient Descent algorithm

– Momentum algorithm

• Algorithms with adaptive learning rate
– AdaGrad algorithm

– RMSProp algorithm

– ADAM algorithm

• 2nd order algorith
– Newton algorithm
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AdaGrad algorithm
• The AdaGrad algorithm  (2011) individually adapts the learning rates 

of all model parameters by scaling them inversely proportional to the 
square root of the sum of all of their historical squared values

• The parameters with the largest partial derivative of the loss have a 
correspondingly rapid decrease in their learning rate, while 
parameters with small partial derivatives have a relatively small 
decrease in their learning rate

• The net effect is greater progress in the more gently sloped directions 
of parameter space

• AdaGrad performs well for some but not all deep learning models
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AdaGrad algorithm
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Remembers the
entire history
evenly



RMSP algorithm

• The RMSProp algorithm (2012) modifies AdaGrad to perform better 
in the non-convex setting by changing the gradient accumulation 
into an exponentially weighted moving average

• AdaGrad shrinks the learning rate according to the entire history of 
the squared gradient and may have made the learning rate too 
small before arriving at such a convex structure

• RMSProp uses an exponentially decaying average to discard history 
from the extreme past so that it can converge rapidly after finding a 
convex bowl, as if it were an instance of the AdaGrad algorithm 
initialized within that bowl
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RMSP algorithm
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The closer parts of the
history are counted more 
strongly.



ADAM algorithm (2014)

• The name “Adam” derives from the phrase “adaptive moments.”

• In the context of the earlier algorithms, it is perhaps best seen as a 
variant on the combination of RMSProp and momentum with a few 
important distinctions.

• in Adam, momentum is incorporated directly as an estimate of the 
first order moment (with exponential weighting) of the gradient.

• Adam includes bias corrections to the estimates of both the first-
order moments (the momentum term) and the (uncentered) 
second-order moments to account for their initialization at the
origin
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ADAM 
algorithm

10/1/2018 40

r estimates the
curvature of the
gradient

s estimates the
gradient from the
history (moment)

Booth of them are
biased to reduce
anomalies at the
initialization



Most commonly applied gradient descent 
methods

• Algorithms with changing but not adaptive learning rate
– Stochastic Gradient Descent algorithm

– Momentum algorithm

• Algorithms with adaptive learning rate
– AdaGrad algorithm

– RMSProp algorithm

– ADAM algorithm

• 2nd order algorith
– Newton algorithm
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Newton’s algorithm
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Back propagation

• We have seen last time how to calculate the gradient in a 
multilayer fully connected network using back 
propagation

– The introduced method was based on gradient descent method

• However, being able to calculate gradient, we might 
select any of the above methods, which might lead to 
faster convergence
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