
Neural Networks

(P-ITEEA-0011)

Gradient based optimization methods

Akos Zarandy

Lecture 4

October 1, 2018

Contents

• Recall
• Single- and multilayer perceptron and its learning method

• Mathematical background

• Simple gradient based optimizers
• 1st and 2nd order optimizers

• Advanced optimizers
• Momentum

• ADAM

10/1/2018. 2

10/1/2018. 3

• Architecture of the single- and multilayer artificial
neural networks

• Operation of these networks

• Derivation of the parameters
– Direct calculations

– Training (most commonly used method)

• Various training methods
– Single-layer perceptrons

– Fully connected multilayer perceptrons

We have discussed…

1 1

() (1) (1)

1 11

(, · ·) ·

L Ln n
L L

i ij km

j

n

m

mi

Net y w xw w  









  
  

 
   

 
 

 
  

  W x

What does training really mean mathematically?

10/1/2018. 4

• Given:
– Definition of the network architecture

• Topology

• Initial weights

• Activation functions (nonlinearities)

• Training set (xi  yi)

What is training?

• Goal:
– Calculation of the optimal weight composition: Wopt

1. Having a known function to approximate

    
2 2

opt 1: min F() Net min .. F() Net ... N, , dx dx   w w
w x x w x x w

2. Having a set of observations from a stochastic process

    
opt

2

1

1
: min

K
K

k k

k

d Net ,
K 


w

w x w

Stochastic process is a
process, where we cannot
observe the exact values.
In these processes, our
observations are always
corrupted with some
random noise.

OPTIMIZATION!!!

Optimization

• Function types:
• Quadratic, in case of regression (stochastic process)

• Conditional log-likelihood, in case of classification (classification process)
• The sum of the negative logarithmic likelihood is minimized

10/1/2018. 5

• Given an Objective function to optimize
• Also called: Error function, Cost function, Loss function, Criterion

    
2

1

1 K

emp k k

k

R d Net ,
K 

 w x w

Optimizations

• Here we always minimize the objective
function

• Optimal value is indicated with

x∗ = argmin f(x).

10/1/2018 6

Mathematics behind: Function analysis

10/1/2018. 7

• Assumptions
• Poor conditioning

• Conditioning number
(Ratio of Eugen values):

• Applied functions should be Lipschitz
continious or have Lipschitz continious
derivate

Conditioning refers to how rapidly a
function changes with respect to
small changes in its inputs.
Functions that change rapidly when
their inputs are perturbed slightly
can be problematic for scientific
computation because rounding
errors in the inputs can result in
large changes in the output.
(e.g. Matrix inversion)

j

i

ji 



,
max

nnAxAxf   1)(

2
y-xL)()(,,  yfxfyx

(where:
L is the Lipschitz constant)

Optimization goal is to find the position.
(Critical or stationary points)

Basic idea of Gradient Descent

10/1/2018. 8

• Derivative means for small ε

• therefore

• This technique is called
Gradient Descent
(Cauchy, 1847).

)()()(xfxfxf  

  )()(xfxfsignxf 

)(xf
)(xf

0)( xf

x

0)( xf

0)( xf

tangents

0)( xf

Stationary points

10/1/2018. 9

• Local minimum, where f`(x)=0, and f(x) is smaller than all
neighboring points

• Local maximum, where f`(x)=0, and f(x) is larger than all
neighboring points

• Saddle points, where f`(x)=0, and neither minimum nor maximum

Local and global minimum

10/1/2018. 10

In neural network parameter optimization we usually settle for finding a
value of f that is very low, but not necessarily minimal in any formal sense.

Multidimensional input functions I

10/1/2018. 11

• In case of a vector scalar
function

• In 2D, directional
derivatives (slope towards x
and y):

x

yxf



),(

y

yxf



),(

Multidimensional input functions II

10/1/2018. 12

• In case of a vector scalar function

• Gradient definition in 2D

A vector in the in the x-y plane

RRf 2:



















y

f

x

f
yxf :),(

),(yxf

Multidimensional input functions III

10/1/2018. 13

• The gradient defines
(hyper) plane
approximating the
function infinitesimally

y
y

yxf
x

x

yxf
z 











),(),(
),(yxf

Multidimensional input functions IV

10/1/2018. 14

• Directional derivative to an arbitrary
direction u (u is unit vector) is the
slope of f in that direction:

• f decreases the fastest:

• u is opposite to the gradient!!!

)(T
xu fx

cos)(min)(min
221,

T

1, TT
xuxu ff x

uuu
x

uuu




Not changing with u

minimum at 180

New points towards steepest descent:
)(xxx fx 

),(yxf

),(yxf

Gradient Descent in multidimensional input case

10/1/2018. 15

• Steepest gradient descent iteration

• ε is the learning rate
• Choosing ε:

– Small constant
– Decreases as the iteration goes ahead
– Line search: checked with several values, and the

one selected, where x` is the smallest

• Stopping condition of the gradient descent
iteration
– When the gradient is zero or close to zero

 )()()1(nfnn x xxx  

Jacobean Matrix

• Partial derivative of a vector  vector function

• Specifically, if we have a function

then the Jacobian matrix

of is defined such that:

10/1/2018 16

nm :f
mnJ

f)(, i

j

ji xf
x


J

2nd derivatives

• 2nd derivative determines
the curvature of a line in 1D

• In nD, it is described by the
Hessian Matrix

• The Hessian is the Jacobian
of the gradient.

10/1/2018 17

 )()()(
22

, xf
xx

xf
xx

xfH
ijji

ji










2nd order gradient descent method I

• 2nd derivative in a specific direction:

• Second-order Taylor series approximation to the function f(x) around
the current point

• if we substitute

10/1/2018 18

))(
2

1
)()()(0

T

0

T

00 xH(xxxgxxxx  ff

Huu
T

0x
where:
g: gradient at x0

H: Hessian at x0

Hggggxgx
T2T

00
2

1
)()(  ff

gxxxgx   00

2nd order gradient descent method II

• Analyzing:

• When the third term is too large, the gradient descent step can actually
move uphill.

• When it is zero or negative, the Taylor series approximation predicts
that increasing ε forever will decrease f forever.

• In practice, the Taylor series is unlikely to remain accurate for large ε, so
one must resort to more heuristic choices of ε in this case.

• When it is positive, solving for
the optimal step

10/1/2018 19

Hggggxgx
T2T

00
2

1
)()(  ff

Hgg

gg
T

T
* 

Original value Expected
improvement

Correction due to
curvature

Simplest 2nd order Gradient descent method:

Newton Method

• Replacing and differentiating it with ,
assuming that we are in a critical point

10/1/2018 20

 ))()(
2

1
)()()()(00

T

00

T

00 x(xxHxxxxxxx  ffff x

    xxHxxxHxxxx
x














)()()(

2

1
)()(0 000

T

0

T

0 fffff xx

xxx )(0
x

0)(0  xfx

  1

00)()(


 xHxx ffx
     1

)()()1(


 nfnfn x xHxx

Newton optimization:

Properties of Newton optimization method

• When f is a positive definite quadratic function, Newton’s
method jumps in a single step to the minimum of the function
directly.

• Newton’s method can reach the critical point much faster than
1st order gradient descent.

10/1/2018 21

  1

00)()(


 xHxx ffx
     1

)()()1(


 nfnfn x xHxx

Newton optimization:

Convex and non-convex functions

10/1/2018. 22

Strongly convex
function:
1 local minimum

Non-convex function:
multiple non-touching
local minima with
different values

Non-Strongly convex
function: infinity local
touching minima with
the same values

Local optimization in non-convex case

• Optimization is done
locally in a certain
domain, where the
function is assumed to be
convex

• Multiple local
optimization is used to
find global minimum

10/1/2018 23

Most commonly applied gradient descent
methods

• Algorithms with changing but not adaptive learning rate
– Stochastic Gradient Descent algorithm

– Momentum algorithm

• Algorithms with adaptive learning rate
– AdaGrad algorithm

– RMSProp algorithm

– ADAM algorithm

• 2nd order algorith
– Newton algorithm

10/1/2018 24

Most commonly applied gradient descent
methods

• Algorithms with changing but not adaptive learning rate
– Stochastic Gradient Descent algorithm

– Momentum algorithm

• Algorithms with adaptive learning rate
– AdaGrad algorithm

– RMSProp algorithm

– ADAM algorithm

• 2nd order algorith
– Newton algorithm

10/1/2018 25

Stochastic Gradient Descent (SGD) algorithm

• Introduced in 1945

• Gradient Descent method, plus:

– Applying mini batches

– Changing the learning rate during the iteration

10/1/2018 26

Batched approach at SGD
• Single vector update approach

– Weights are updated after each input vector

• Batched update approach

– All the input vectors are applied

– Updates (Δwij) are calculated for each vector, and averaged

– Update is done with the averaged values (Δwij) after the entire batch is calculated

• Mini batch approach

– When the number of inputs are very high (billions), batch would be ineffective

– Random selection of m input vectors (m is a few hundred)

– Updates (Δwij) are calculated for each vector, and averaged

– Update is done with the averaged values (Δwij) after the mini batch is calculated

– Works efficiently when far away from minimum, but inaccurate close to minimum

– Requires reducing learning rate

10/1/2018 27

• Sufficient conditions to guarantee convergence of
SGD:

• In practice:

• After iteration τ , it is common to leave ε constant

Learning rate at SGD

10/1/2018 28

and

Stochastic Gradient Descent algorithm

where: L is the cost function

10/1/2018 29

Stochastic Gradient Descent algorithm

• This very elongated quadratic
function resembles a long canyon.

• Gradient descent wastes time
repeatedly descending canyon
walls, because they are the
steepest feature.

• Because the step size is somewhat
too large, it has a tendency to
overshoot the bottom of the
function and thus needs to
descend the opposite canyon wall
on the next iteration.

10/1/2018 30

Momentum I

• Introduced in 1964
• Physical analogy
• The idea is to simulate a unity weight mass
• It flows through on the surface of the error

function
• Follows Newton’s laws of dynamics
• Having v velocity
• Momentum correctly traverses the canyon

lengthwise, while gradient steps waste
time moving back and forth across the
narrow axis of the canyon.

10/1/2018 31

Momentum II: velocity considerations

10/1/2018 32

Terminal velocity is applied when it finds descending gradient permanently:

Momentum III

10/1/2018 33

Most commonly applied gradient descent
methods

• Algorithms with changing but not adaptive learning rate
– Stochastic Gradient Descent algorithm

– Momentum algorithm

• Algorithms with adaptive learning rate
– AdaGrad algorithm

– RMSProp algorithm

– ADAM algorithm

• 2nd order algorith
– Newton algorithm

10/1/2018 34

AdaGrad algorithm
• The AdaGrad algorithm (2011) individually adapts the learning rates

of all model parameters by scaling them inversely proportional to the
square root of the sum of all of their historical squared values

• The parameters with the largest partial derivative of the loss have a
correspondingly rapid decrease in their learning rate, while
parameters with small partial derivatives have a relatively small
decrease in their learning rate

• The net effect is greater progress in the more gently sloped directions
of parameter space

• AdaGrad performs well for some but not all deep learning models

10/1/2018 35

AdaGrad algorithm

10/1/2018 36

Remembers the
entire history
evenly

RMSP algorithm

• The RMSProp algorithm (2012) modifies AdaGrad to perform better
in the non-convex setting by changing the gradient accumulation
into an exponentially weighted moving average

• AdaGrad shrinks the learning rate according to the entire history of
the squared gradient and may have made the learning rate too
small before arriving at such a convex structure

• RMSProp uses an exponentially decaying average to discard history
from the extreme past so that it can converge rapidly after finding a
convex bowl, as if it were an instance of the AdaGrad algorithm
initialized within that bowl

10/1/2018 37

RMSP algorithm

10/1/2018 38

The closer parts of the
history are counted more
strongly.

ADAM algorithm (2014)

• The name “Adam” derives from the phrase “adaptive moments.”

• In the context of the earlier algorithms, it is perhaps best seen as a
variant on the combination of RMSProp and momentum with a few
important distinctions.

• in Adam, momentum is incorporated directly as an estimate of the
first order moment (with exponential weighting) of the gradient.

• Adam includes bias corrections to the estimates of both the first-
order moments (the momentum term) and the (uncentered)
second-order moments to account for their initialization at the
origin

10/1/2018 39

ADAM
algorithm

10/1/2018 40

r estimates the
curvature of the
gradient

s estimates the
gradient from the
history (moment)

Booth of them are
biased to reduce
anomalies at the
initialization

Most commonly applied gradient descent
methods

• Algorithms with changing but not adaptive learning rate
– Stochastic Gradient Descent algorithm

– Momentum algorithm

• Algorithms with adaptive learning rate
– AdaGrad algorithm

– RMSProp algorithm

– ADAM algorithm

• 2nd order algorith
– Newton algorithm

10/1/2018 41

Newton’s algorithm

10/1/2018 42

Back propagation

• We have seen last time how to calculate the gradient in a
multilayer fully connected network using back
propagation

– The introduced method was based on gradient descent method

• However, being able to calculate gradient, we might
select any of the above methods, which might lead to
faster convergence

10/1/2018 43

